- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Lyall, Neil (3)
-
Magyar, Ákos (3)
-
Huckaba, Lauren (1)
-
LYALL, NEIL (1)
-
MAGYAR, ÁKOS (1)
-
Parshall, Hans (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Lyall, Neil; Magyar, Ákos; Parshall, Hans (, American Journal of Mathematics)
-
LYALL, NEIL; MAGYAR, ÁKOS (, Mathematical Proceedings of the Cambridge Philosophical Society)Abstract We establish that any subset of ℝ d of positive upper Banach density necessarily contains an isometric copy of all sufficiently large dilates of any fixed two-dimensional rectangle provided d ⩾ 4. We further present an extension of this result to configurations that are the product of two non-degenerate simplices; specifically we show that if Δ k 1 and Δ k 2 are two fixed non-degenerate simplices of k 1 + 1 and k 2 + 1 points respectively, then any subset of ℝ d of positive upper Banach density with d ⩾ k 1 + k 2 + 6 will necessarily contain an isometric copy of all sufficiently large dilates of Δ k 1 × Δ k 2 . A new direct proof of the fact that any subset of ℝ d of positive upper Banach density necessarily contains an isometric copy of all sufficiently large dilates of any fixed non-degenerate simplex of k + 1 points provided d ⩾ k + 1, a result originally due to Bourgain, is also presented.more » « less
-
Huckaba, Lauren; Lyall, Neil; Magyar, Ákos (, Proceedings of the American Mathematical Society)
An official website of the United States government
